Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Circumpolar Health ; 82(1): 2183931, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36880131

RESUMO

In order to be digested, the disaccharide trehalose needs to be cleaved by the trehalase enzyme. There were reports suggesting that trehalase deficiency was more common in high-latitude than in the temperate climate populations. New horizons were opened for the epidemiologic research of trehalase enzymopathy when it became clear that reduced trehalase activity is determined by the A allele of tTREH gene (rs2276064). The aim of this study was to analyze the frequencies of the trehalase gene alleles and genotypes among the indigenous peoples of Siberia and the Russian Far East. We genotyped 567 samples representing the indigenous peoples of Siberia and the Russian Far East and 146 samples representing Eastern Slavs as the reference dataset. We found that the frequencies of the A*TREH alleles increased to the east. The A*TREH allele frequency was 0.03 in the reference group, 0.13-0.26 in the North-West Siberian indigenous populations, 0.29-0.30 in the South Siberia, 0.43 in West Siberia, and 0.46 in the low Amur populations. The highest frequency of the A allele (0.63) was observed in the Chukchi and Koryak populations. From 1 to 5% of European origin individuals are at risk of trehalase enzymopathy. In the indigenous populations, the frequency of the A*TREH allele varies 13% to 63%, whereas the frequency of the AA*TREH genotype from 3% to 39%. Thus, the total risk of trehalase enzymopathy among the homo- and heterozygous carriers of the A*TREH allele in the studied indigenous populations may be as high as 24% to 86%.


Assuntos
Trealase , Humanos , Sibéria/epidemiologia , Trealase/genética , Prevalência , Federação Russa/epidemiologia , Ásia Oriental
2.
Nat Ecol Evol ; 3(6): 966-976, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036896

RESUMO

The indigenous populations of inner Eurasia-a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra-harbour tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP). We find that present-day inner Eurasian populations are structured into three distinct admixture clines stretching between various western and eastern Eurasian ancestries, mirroring geography. The Botai and more recent ancient genomes from Siberia show a decrease in contributions from so-called 'ancient North Eurasian' ancestry over time, which is detectable only in the northern-most 'forest-tundra' cline. The intermediate 'steppe-forest' cline descends from the Late Bronze Age steppe ancestries, while the 'southern steppe' cline further to the south shows a strong West/South Asian influence. Ancient genomes suggest a northward spread of the southern steppe cline in Central Asia during the first millennium BC. Finally, the genetic structure of Caucasus populations highlights a role of the Caucasus Mountains as a barrier to gene flow and suggests a post-Neolithic gene flow into North Caucasus populations from the steppe.


Assuntos
Povo Asiático , Fluxo Gênico , Geografia , Humanos , Federação Russa
3.
Oncotarget ; 5(18): 8223-34, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25327560

RESUMO

The MDM2 promoter SNP285C is located on the SNP309G allele. While SNP309G enhances Sp1 transcription factor binding and MDM2 transcription, SNP285C antagonizes Sp1 binding and reduces the risk of breast-, ovary- and endometrial cancer. Assessing SNP285 and 309 genotypes across 25 different ethnic populations (>10.000 individuals), the incidence of SNP285C was 6-8% across European populations except for Finns (1.2%) and Saami (0.3%). The incidence decreased towards the Middle-East and Eastern Russia, and SNP285C was absent among Han Chinese, Mongolians and African Americans. Interhaplotype variation analyses estimated SNP285C to have originated about 14,700 years ago (95% CI: 8,300 - 33,300). Both this estimate and the geographical distribution suggest SNP285C to have arisen after the separation between Caucasians and modern day East Asians (17,000 - 40,000 years ago). We observed a strong inverse correlation (r = -0.805; p < 0.001) between the percentage of SNP309G alleles harboring SNP285C and the MAF for SNP309G itself across different populations suggesting selection and environmental adaptation with respect to MDM2 expression in recent human evolution. In conclusion, we found SNP285C to be a pan-Caucasian variant. Ethnic variation regarding distribution of SNP285C needs to be taken into account when assessing the impact of MDM2 SNPs on cancer risk.


Assuntos
Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/genética , População Branca/genética , Ásia/epidemiologia , Mineração de Dados , Bases de Dados Genéticas , Europa (Continente)/epidemiologia , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Humanos , Neoplasias/enzimologia , Neoplasias/etnologia , Regiões Promotoras Genéticas , Fatores de Proteção , Medição de Risco , Fatores de Risco
4.
J Physiol Anthropol Appl Human Sci ; 24(4): 375-82, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16079584

RESUMO

It has been proposed that the Delta32 mutation in the chemokine receptor gene, inducing resistance to HIV-1 and, probably, to other virus infections, has undergone selection in historical times. The frequency of this mutant allele has changed rapidly both in time (during the last two millennia) and in space (across Eurasia). We compiled a global database on Delta32 allele frequencies in 300 populations. Nearly 10 percent of them are our data on 35 East European populations analyzed here for the first time. A detailed map of Delta32 frequency distribution was constructed and statistically analysed. We found a linearly decreasing trend with a maximum in areas surrounding the Baltic and White seas. Significant correlations with ground surface temperature were revealed. However, compared with our previous results, these correlations diminished, indicating that the influence of climate on Delta32 distribution was, if anything at all, indirect. The proposed scenario includes: i) arise and initial spread of the mutation among Uralic-speaking populations; ii) a frequency increase in northeastern Europe as a result of selection and/or genetic drift; iii) secondary spread (with selection continued) due to gene flow and the migrations of northern Europeans across the globe.


Assuntos
Demografia , Meio Ambiente , Predisposição Genética para Doença , Genética Populacional , Infecções por HIV/genética , HIV-1 , Receptores CCR5/genética , Ásia , Bases de Dados Genéticas , Emigração e Imigração , Europa (Continente) , Frequência do Gene , Humanos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...